近年来,由于其在数字人物,角色产生和动画中的广泛应用,人们对3D人脸建模的兴趣越来越大。现有方法压倒性地强调了对面部的外部形状,质地和皮肤特性建模,而忽略了内部骨骼结构和外观之间的固有相关性。在本文中,我们使用学习的参数面部发电机提出了雕塑家,具有骨骼一致性的3D面部创作,旨在通过混合参数形态表示轻松地创建解剖上正确和视觉上令人信服的面部模型。雕塑家的核心是露西(Lucy),这是与整形外科医生合作的第一个大型形状面部脸部数据集。我们的Lucy数据集以最古老的人类祖先之一的化石命名,其中包含正牙手术前后全人头的高质量计算机断层扫描(CT)扫描,这对于评估手术结果至关重要。露西(Lucy)由144次扫描,分别对72名受试者(31名男性和41名女性)组成,其中每个受试者进行了两次CT扫描,并在恐惧后手术中进行了两次CT扫描。根据我们的Lucy数据集,我们学习了一个新颖的骨骼一致的参数面部发电机雕塑家,它可以创建独特而细微的面部特征,以帮助定义角色,同时保持生理声音。我们的雕塑家通过将3D脸的描绘成形状混合形状,姿势混合形状和面部表达混合形状,共同在统一数据驱动的框架下共同建模头骨,面部几何形状和面部外观。与现有方法相比,雕塑家在面部生成任务中保留了解剖学正确性和视觉现实主义。最后,我们展示了雕塑家在以前看不见的各种花式应用中的鲁棒性和有效性。
translated by 谷歌翻译
生产级别的工作流程用于产生令人信服的3D动态人体面孔长期以来依赖各种劳动密集型工具用于几何和纹理生成,运动捕获和索具以及表达合成。最近的神经方法可以使单个组件自动化,但是相应的潜在表示不能像常规工具一样为艺术家提供明确的控制。在本文中,我们提出了一种新的基于学习的,视频驱动的方法,用于生成具有高质量基于物理资产的动态面部几何形状。对于数据收集,我们构建了一个混合多视频测量捕获阶段,与超快速摄像机耦合以获得原始的3D面部资产。然后,我们着手使用单独的VAE对面部表达,几何形状和基于物理的纹理进行建模,我们在各个网络的潜在范围内强加了基于全局MLP的表达映射,以保留各个属性的特征。我们还将增量信息建模为基于物理的纹理的皱纹图,从而达到高质量的4K动态纹理。我们展示了我们在高保真表演者特异性面部捕获和跨认同面部运动重新定位中的方法。此外,我们的基于多VAE的神经资产以及快速适应方案也可以部署以处理内部视频。此外,我们通过提供具有较高现实主义的各种有希望的基于身体的编辑结果来激发我们明确的面部解散策略的实用性。综合实验表明,与以前的视频驱动的面部重建和动画方法相比,我们的技术提供了更高的准确性和视觉保真度。
translated by 谷歌翻译
新兴的元应用需要人类手的可靠,准确和逼真的复制品,以便在物理世界中进行复杂的操作。虽然真实的人手代表了骨骼,肌肉,肌腱和皮肤之间最复杂的协调之一,但最先进的技术一致专注于仅建模手的骨架。在本文中,我们提出了Nimble,这是一种新型的参数手模型,其中包括缺少的密钥组件,将3D手模型带入了新的现实主义水平。我们首先在最近的磁共振成像手(MRI手)数据集上注释肌肉,骨骼和皮肤,然后在数据集中的单个姿势和受试者上注册一个体积模板手。敏捷由20个骨头组成,作为三角形网格,7个肌肉群作为四面体网眼和一个皮肤网。通过迭代形状的注册和参数学习,它进一步产生形状的混合形状,姿势混合形状和关节回归器。我们证明将敏捷性应用于建模,渲染和视觉推理任务。通过强制执行内部骨骼和肌肉以符合解剖学和运动学规则,Nimble可以使3D手动画为前所未有的现实主义。为了建模皮肤的外观,我们进一步构建了一个光度法,以获取高质量的纹理和正常地图,以模型皱纹和棕榈印刷。最后,敏捷还通过合成丰富的数据或直接作为推理网络中的可区分层来使基于学习的手姿势和形状估计受益。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译